Activation of deltaF508 CFTR in a cystic fibrosis respiratory epithelial cell line by 4-phenylbutyrate, genistein and CPX.
نویسندگان
چکیده
The cellular basis of cystic fibrosis (CF) is a defect in a cyclic adenosine monophosphate (cAMP)-activated chloride channel (CF transmembrane conductance regulator) in epithelial cells that leads to decreased chloride ion transport and impaired water transport across the cell membrane. This study investigated whether it was possible to activate the defective chloride channel in cystic fibrosis respiratory epithelial cells with 4-phenylbutyrate (4PBA), genistein and 8-cyclopentyl-1,3-dipropylxanthine (CPX). The CF bronchial epithelial cell line CFBE41o-, which expresses the deltaF508 mutation, was treated with these agents and loss of Cl-, indicating Cl- efflux, measured by X-ray microanalysis. 8-bromo-cAMP alone did not induce Cl- efflux in CFBE41o- cells, but after incubation with 4PBA a significant efflux of Cl- occurred. Stimulation of cells with a combination of genistein and cAMP also induced Cl- efflux, whereas a combination of pretreatment with 4PBA and a combined stimulation with genistein and cAMP induced an even larger Cl- efflux. Cl- efflux could also be stimulated by CPX, but this effect was not enhanced by 4PBA pretreatment. The deltaF508 mutation leads to impaired processing of the cystic fibrosis transmembrane conductance regulator. The increased efflux of chloride after 4-phenylbutyrate treatment can be explained by the fact that 4-phenylbutyrate allows the deltaF508 cystic fibrosis transmembrane conductance regulator to escape degradation and to be transported to the cell surface. Genistein and 8-cyclopentyl-1,3-dipropylxanthine act by stimulating chloride ion efflux by increasing the probability of the cystic fibrosis transmembrane conductance regulator being open. The combination of 4-phenylbutyrate and genistein may be useful in a potential pharmacological therapy for cystic fibrosis patients with the deltaF508 mutation.
منابع مشابه
A common mechanism for cystic fibrosis transmembrane conductance regulator protein activation by genistein and benzimidazolone analogs.
We have investigated the mechanism of action of two benzimidazolone analogs (NS004 and NS1619) on DeltaF508-CFTR using both whole-cell and cell-attached patch-clamp techniques and compared their effects with those of genistein. We conclude that benzimidazolone analogs and genistein act through a common mechanism, based on the following evidence: 1) both act only on phosphorylated CFTR, 2) the m...
متن کاملGene expression profile analysis of 4-phenylbutyrate treatment of IB3-1 bronchial epithelial cell line demonstrates a major influence on heat-shock proteins.
Most individuals with cystic fibrosis (CF) carry one or two mutations that result in a maturation defect of the full-length CFTR protein. The DeltaF508 mutation results in a mutant protein that is degraded by the proteosome instead of progressing to the apical membrane where it functions as a cAMP-regulated chloride channel. 4-Phenylbutyrate (PBA) modulates heat-shock protein expression and pro...
متن کاملImpact of CFTR DeltaF508 mutation on prostaglandin E2 production and type IIA phospholipase A2 expression by pulmonary epithelial cells.
Cystic fibrosis (CF) is characterized by an exacerbated inflammatory pulmonary response with excessive production of inflammatory mediators. We investigated here the impact of cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction on prostaglandin E2 (PGE2) production and type IIA secreted phospholipase A2 (sPLA2-IIA) expression. We show that both resting and LPS-stimulated huma...
متن کاملACELL October 46/4
Illek, Beate, Lei Zhang, Nancy C. Lewis, Richard B. Moss, Jian-Yun Dong, and Horst Fischer. Defective function of the cystic fibrosis-causing missense mutation G551D is recovered by genistein. Am. J. Physiol. 277 (Cell Physiol. 46): C833–C839, 1999.—The patch-clamp technique was used to investigate the effects of the isoflavone genistein on disease-causing mutations (G551D and DF508) of the cys...
متن کاملDefective function of the cystic fibrosis-causing missense mutation G551D is recovered by genistein.
The patch-clamp technique was used to investigate the effects of the isoflavone genistein on disease-causing mutations (G551D and ΔF508) of the cystic fibrosis transmembrane conductance regulator (CFTR). In HeLa cells recombinantly expressing the trafficking-competent G551D-CFTR, the forskolin-stimulated Cl currents were small, and average open probability of G551D-CFTR was P o = 0.047 ± 0.019....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European respiratory journal
دوره 15 5 شماره
صفحات -
تاریخ انتشار 2000